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Abstract. We introduce a new method for beam steering 
in ultra-wide bandwidth arrays. The approach avoids the 
need for tunable microwave delays by using lag 
synchronization in a linear array of locally coupled 
chaotic oscillators. Steering is controlled by tuning the 
natural frequency of the oscillators and is analytically 
equivalent to first order to using explicit delay elements. 
Using chaotic rf circuits oscillating at ~20MHz, we show 
both lag and lead synchronization can be practically 
controlled in rf arrays. 
 
 

1. INTRODUCTION 
 
 Recently, nonlinear chaotic oscillators have been 
suggested as efficient sources for generating ultra-
wideband radar waveforms. The broadband and non-
repeating nature of chaos provides an ideal combination 
of high range resolution with no range ambiguity. Unlike 
standard noise waveforms, chaotic waveforms are 
generated by simple deterministic oscillators, which allow 
for easy control (Ott et al., 1990) and synchronization 
(Pecora and Carroll, 1990). For ultra-wideband radar, it is 
natural to consider the power combining properties of 
arrays of chaotic microwave oscillators (Corron et al., 
2003). Local coupling can synchronize an extended array, 
thereby providing a coherent state suitable for beam 
forming in a wide-bandwidth radar system. 
 
 The ability to electronically steer a beam is critical 
for a practical system. As depicted in Fig. 1, wideband 
steering requires a true time delay between radiating 
elements. Following conventional phased array design, a 
wideband array requires a tunable delay for each element, 
which is economically impractical with current 
microwave technology. Alternatively, we propose to use 
synchronization due to local coupling in a chaotic array. 
To steer the array, a small detuning is applied to each 
oscillator to slightly shift its natural frequency. Oscillators 
that are tuned to run faster will lead those tuned slower, 
providing a small time shift between the waveforms 
produced by each oscillator. This effect is called lag 
synchronization, which has recently been observed and 
reported for mismatched chaotic systems (Rosenblum, 
1997). Similar ideas have been proposed for narrowband 
arrays (Meadows et al., 2002); however, application of 
lag synchronization to chaotic arrays is new, and we 
recently reported the first experimental results using an 
array of three rf oscillators (Corron et al., 2004). 
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Fig. 1. Beam Steering in a wide bandwidth array. 

 
 
 

2. NOVEL RF CHAOS CIRCUIT 
 
 To explore lag synchronization, we developed a new 
20-MHz chaotic oscillator, shown in Fig. 2. This simple 
circuit requires just one active component—a negative 
resistor—and a nonlinear device consisting of two diodes. 
The negative resistor is implemented using a fast voltage-
feedback operational amplifier (Texas Instruments 
OPA690). A typical waveform generated by this circuit is 
shown in Fig. 3. 
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Fig. 2. 20-MHz chaotic oscillator. 

 

-1.0 -0.5 0.0 0.5 1.0

-1

0

 

 

v 1(t)
  [

V
]

t  [s]  
Fig. 3. Typical waveform from chaotic circuit. 
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3. OSCILLATOR ARRAY 
 
 Multiple chaotic oscillators can synchronize using 
unidirectional coupling as shown in Fig. 4. Here, the left 
oscillator (drive) is coupled unidirectionally to the right 
oscillator (response) via a unity gain buffer and a resistor 
RS. To make a larger array, additional response circuits 
are coupled to the right as indicated, creating a chain of 
unidirectionally coupled oscillators. 
 
 We control lag synchronization in the array by tuning 
a capacitor C(τ)  in each response oscillator. For 
C(τ) = C1, the response will synchronize identically with 
the drive. Increasing C(τ) > C1 by the same small amount 
in all response oscillators results in a consistent time 
delay τ between array elements. Experimental results for 
a 3-element array using RS = 510 Ω are shown in Fig. 5. 
This method for inducing lag synchronization is 
analytically equivalent to first order in τ to using explicit 
delay elements, and a significant lag can be induced by 
increasing C(τ) as much as 10%. Experimentally, the 
induced lag is controlled continuously to more than 5 ns, 
or about 1/10th of a cycle. Generally, the lag increases 
with C(τ), but we observe a gradual degradation in 
synchronization quality for larger lag. Eventually, 
synchronization is lost for large C(τ), as the response 
circuits lose phase lock with the drive and the array is no 
longer coherent. 
 
 We also observed a range of lead or anticipating 
synchronization (Voss, 2000), corresponding to a negative 
delay. Experimental observation of anticipating 
synchronization in chaotic rf systems has not previously 
been reported. This state is achieved by decreasing 
C(τ) < C1, yielding response states that lead the drive. 
Experimental results are shown in Fig. 6. Similar to lag 
synchronization, the quality of lead synchronization 
degrades smoothly up to a critical detuning, where phase 
locking is suddenly lost. However, the range of high-
quality lead synchronization is significantly less than that 
of lag synchronization, which we attribute to fundamental 
limitations of anticipating synchronization (Pethel et al., 
2003). 
 
 

4. CONCLUSIONS 
 
 We developed a new method to control a true time 
delay using lag synchronization and demonstrated the 
mechanics of beam steering in a 3-element rf array. This 
approach is analytically equivalent to first order to using 
variable delay lines, but is much simpler and more 
economical to implement. As a result, chaotic microwave 
arrays may soon enable a new generation of low-cost, 
high-performance, ultra-wide bandwidth radar. 
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Fig. 4. Array with unidirectional local coupling. 
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Fig. 5. Experimentally observed lag synchronization. 
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Fig. 6. Observed lead or anticipating synchronization. 
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